Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment

Abstract
The composition of the mitochondrial inner membrane and uncoupling protein [such as adenine nucleotide translocator (ANT)] contents are the main factors involved in the energy-wasting proton leak. This leak is increased by glucocorticoid treatment under nonphosphorylating conditions. The aim of this study was to investigate mechanisms involved in glucocorticoid-induced proton leak and to evaluate the consequences in more physiological conditions (between states 4 and 3). Isolated liver mitochondria, obtained from dexamethasone-treated rats (1.5 mg·kg−1·day−1), were studied by polarography, Western blotting, and high-performance thin-layer chromatography. We confirmed that dexamethasone treatment in rats induces a proton leak in state 4 that is associated with an increased ANT content, although without any change in membrane surface or lipid composition. Between states 4 and 3, dexamethasone stimulates ATP synthesis by increasing both the mitochondrial ANT and F1-F0 ATP synthase content. In conclusion, dexamethasone increases mitochondrial capacity to generate ATP by modifying ANT and ATP synthase. The side effect is an increased leak in nonphosphorylating conditions.