Physiological and enzymatic activity of pepper seeds (Capsicum annuum) during priming

Abstract
Pepper (Capsicum annuum L. cv. Keystone Resistance Giant 3) seeds were monitored during priming to determine if seed treatments which accelerate the rate of germination could be correlated with specific physiological changes within the seeds. Pepper seeds primed with −0.90 and −1.35 MPa NaCl solutions at 23°C for 18 days did not completely equilibrate with the osmotic potential of the priming solution. Seed respiratory rates indicated that priming extends the lag phase of germination following imbibition. Soluble protein levels increased 115% in primed seeds, and the uptake and incorporation of [14C(U)] labelled amino acids into the acid insoluble fraction increased throughout the priming treatments. Alcohol dehydrogenase (EC 1.1.1.1, anaerobic metabolism), glucose‐6‐phosphate dehydrogenase (EC 1.1.1.49) and 6‐phosphogluconate dehydrogenase (EC 1.1.1.44, pentose phosphate pathway) activities remained stable throughout the priming treatment, but were higher after 6 days. than the water‐imbibed controls. Aldolase (EC 4.2.1.1. glycolysis) and isocitrate lyase (EC 4.1.3.1, glyoxylate cycle) activities increased with imbibition and were 61 and 56% (respectively) higher in primed seeds as compared to the water‐imbibed controls after 12 days. Treatment with the −0.90 MPa NaCl solution was more effective than the −1.35 MPa solution in improving the rate of germination, yet there were no significant differences between the protein concentrations or enzyme activities of the two priming treatments. However, the incorporation of labelled amino acids into pepper seeds was significantly higher in the −0.90 MPa priming treatment.