Stable and efficient electrophosphorescent organic light-emitting devices grown by organic vapor phase deposition

Abstract
An electrophosphorescent organic light-emitting device (PHOLED™) employing fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] as the green emitting phosphor has been fabricated using a pilot-production organic vapor phase deposition (OVPD™) system. Highly controlled mass transport of the organic vapor to the substrate results in deposition rates of over 10Ås and spatial uniformity better than ±2% across a 150mm×150mm substrate with less than ±2% run-to-run variations. The device current–voltage, luminous efficiency, and operational lifetime performances are compared to those of a similar device grown by conventional vacuum thermal evaporation (VTE). The green OVPD-grown PHOLED exhibits a maximum external quantum efficiency of (7.0±0.1)% at a luminance of 1000cdm2 , comparable to the VTE device performance. The operational lifetime of the OVPD-grown devices was found to be comparable to or even somewhat longer than the lifetime achieved by VTE. Furthermore, PHOLEDs with emissive layers deposited at 4.8 and 10.8Ås are compared, and demonstrate equivalent performance.