3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation

Abstract
We report the development of a quantum cascade laser, at λ=87.2 μm, corresponding to 3.44 THz or 14.2 meV photon energy. The GaAs/Al0.15Ga0.85As laser structure utilizes longitudinal-optical (LO) phonon scattering for electron depopulation. Laser action is obtained in pulsed mode at temperatures up to 65 K, and at 50% duty cycle up to 29 K. Operating at 5 K in pulsed mode, the threshold current density is 840 A/cm2, and the peak power is approximately 2.5 mW. Based on the relatively high operating temperatures and duty cycles, we propose that direct LO-phonon-based depopulation is a robust method for achieving quantum cascade lasers at long-wavelength THz frequencies.