Abstract
Biohydrolysis of various α-methylstyrene oxide derivatives, differently substituted at the aromatic ring, was investigated using 10 epoxide hydrolases from different origins. Our results indicate that the enantioselectivity of these biohydrolyses strongly depends on the nature of the enzyme and of the substituent. Using some of these enzymes, this approach allows to prepare these epoxides in high optical purity. The potentiality to perform efficient preparative-scale resolution using such a biocatalyst was illustrated by the four-step synthesis of (S)-ibuprofen, a nonsteroidal antiinflammatory drug and household pain killer, one of the top-ten drugs sold worldwide. Using a combined chemoenzymatic strategy, we were thus able to set up a four-step enantioconvergent procedure allowing for the synthesis of this compound in optically pure form and with a 47% overall yield, including the resolution process, due to a possible recycling of the formed diol via chemical racemisation.