Cryptic Grain-Scale Heterogeneity of Oxygen Isotope Ratios in Metamorphic Magnetite

Abstract
Oxygen isotope ratios measured by ion microprobe in magnetite from granulite-facies marble of the Adirondack Mountains, New York, range from +2 to +11 per mil (standard mean ocean water) across a single grain that measures 3 millimeters by 5 millimeters. Low values are concentrated in irregular domains near the grain boundary but also occur in the grain's interior. In contrast, grains 1 millimeter in diameter that are from a second nearby sample show no significant heterogeneity, except within 10 micrometers of the grain boundary. These data, including large gradients of up to 9 per mil per 10 micrometers, provide important new constraints on the nature and origins of intragrain isotopic heterogeneity and on oxygen isotope thermometry. The differences between these magnetite grains result from contrasting mechanisms of isotope exchange with fluids after the peak of regional metamorphism. Volume diffusion of oxygen through the crystal structure of magnetite contributed to isotope exchange in the rims of small grains, but larger grains are crosscut by healed cracks that are not readily detected and that short-circuited diffusion.