Some exact solutions to the nonlinear shallow-water wave equations

Abstract
These exact solutions correspond to time-dependent motions in parabolic basins. A characteristic feature is that the shoreline is not fixed. It is free to move and must be determined as part of the solution. In general, the motion is oscillatory and has the appropriate small-amplitude limit. For the case in which the parabolic basin reduces to a flat plane, there is a solution for a flood wave. These solutions provide a valuable test for numerical models of inundating storm tides.

This publication has 6 references indexed in Scilit: