Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms
Open Access
- 30 May 2007
- journal article
- research article
- Published by Oxford University Press (OUP) in Nucleic Acids Research
- Vol. 35 (12) , 3879-3892
- https://doi.org/10.1093/nar/gkm372
Abstract
DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin.Keywords
This publication has 56 references indexed in Scilit:
- Implications of Alternative Substrate Binding Modes for Catalysis by Uracil-DNA Glycosylase: An Apparent Discrepancy ResolvedBiochemistry, 2006
- Mimicking damaged DNA with a small molecule inhibitor of human UNG2Nucleic Acids Research, 2006
- Quantitative determination of uracil residues in Escherichia coli DNA: Contribution of ung, dug, and dut genes to uracil avoidanceDNA Repair, 2006
- Monoclonal B-cell hyperplasia and leukocyte imbalance precede development of B-cell malignancies in uracil-DNA glycosylase deficient miceDNA Repair, 2005
- B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracilThe Journal of Experimental Medicine, 2005
- Origin of Endogenous DNA Abasic Sites in Saccharomyces cerevisiaeMolecular and Cellular Biology, 2003
- Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomasOncogene, 2003
- Multiple sequence alignment with the Clustal series of programsNucleic Acids Research, 2003
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Crystal structure and mutational analysis of human uracil-DNA glycosylase: Structural basis for specificity and catalysisCell, 1995