The Interaction of Displaced Number State and Squeezed Number State Fields with Two-level Atoms

Abstract
The time-evolution of a single two-level atom in a single-mode high-Q cavity is sensitive to the quantum fluctuations of the cavity radiation field and to its photon statistics: this sensitivity is realizable experimentally in the Rydberg atom micromaser. We study the effects of the interaction of a two-level atom with two new non-classical radiation fields: the squeezed number state and the displaced number state realizable by nonlinear and linear transformations of field number states which have an initially precise occupation number. The time-varying field fluctuations caused by the atomic interaction are described using the Q-function quasi-probability.