Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders

Abstract
In this Letter we present an experimental analysis of the acoustic transmission of a two-dimensional periodic array of rigid cylinders in air with two different geometrical configurations: square and triangular. In both configurations, and above a certain filling fraction, we observe an overlap, in the range of the audible frequencies, between the attenuation peaks measured along the two high-symmetry directions of the Brillouin zone. This effect is considered as the fingerprint of the existence of a full acoustic gap. Nevertheless, the comparison with our calculation of band structures shows that the triangular lattice has band states in that frequency range. We call them deaf bands. This contradictory result is explained by looking at the symmetry of the deaf bands; they cannot be excited by experiments of sound transmission.