Abstract
This study examined the pattern of forces and peak loads on the hands of six advanced and six intermediate level male tennis players as they performed one-handed backhand drives. Two miniature load cells were mounted on a midsized graphite racket. The force on the thenar and hypothenar eminences of the hand were sampled at 1000 Hz. Forces on the thenar eminence in preparation for impact were significantly larger and less variable for the advanced subjects. Postimpact peak forces did not differ across skill level and were smaller than the loads reported for forehand drives. The significantly lower thenar forces the intermediate subjects used in preparation for impact may provide less resistance to the acceleration of the racket created by ball impact. A large impact acceleration may be related to a rapid stretch of the wrist extensors, which has been hypothesized to be the cause of tennis elbow.