Regulation of Monocyte Chemotactic Protein-1 Expression in Human Endometrial Stromal Cells by Estrogen and Progesterone1

Abstract
There is a cyclicity in the number of endometrial macrophages that is most likely secondary to changes in steroid hormone levels. One cytokine that controls macrophage migration is monocyte chemotactic protein-1 (MCP-1). In the endometrium, highest levels of MCP-1 are detected perimenstrually, when estrogen levels are low; however, when estrogen levels are high (around the time of ovulation), MCP-1 levels are lowest. We hypothesized that sex steroids may be involved in the regulation of macrophage migration by regulating MCP-1 expression. We investigated the regulation of MCP-1 expression in human endometrial stromal cells by estradiol 17β (E2) and progestins. We found that MCP-1 mRNA levels decreased in response to E2 (5 × 10−8 M), with biphasic nadirs at 8 h and 24 h. MCP-1 protein production was also inhibited by E2 in a concentration-dependent manner. Tamoxifen, an anti-estrogen, alone (10−7 M) did not affect MCP-1 expression, but it reversed the E2-induced inhibition up to 80%. Progesterone (10−7 M) alone slightly decreased MCP-1 levels, and the combination of E2 and progesterone further decreased them, but that decrease was not different from that observed using E2 treatment alone. In summary, we found that E2 inhibits MCP-1 expression in endometrial stromal cells, and we speculate that E2 may control endometrial macrophage migration by regulating MCP-1 expression.

This publication has 20 references indexed in Scilit: