Kinetics of charge trapping in dielectrics
- 15 July 1985
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 58 (2) , 831-837
- https://doi.org/10.1063/1.336152
Abstract
Transient electronic conduction in thermally grown SiO2 has been shown to be limited by space‐charge evolution. The space charge originates from trapping of the injected species. It induces a field which affects the emission of charges at the injecting electrode. The trapping of charge has been analyzed on the basis of three, essentially different, mechanisms: (1) first order trapping, (2) first order trapping which takes into account that trapped charges repel injected charges, and (3) trapping which increases during injection due to the generation of states. It is shown that implementation of the three trapping mechanisms yields a current versus injected charge plot which is given in the asymptotes by simple logarithmic functions. Intersection of the asymptotes directly yields the value of the capture cross section. From the slopes of the asymptotes the surface density(ies) of the trap(s) can be calculated. The method can be used without, a p r i o r i, assuming either the injection mechanism or the trapping mechanism. From the relative position of the intersection points the applicable mechanism can be derived, however. For thermal SiO2 on Si we determined, by this method, values of trap densities and capture cross sections which are typical for water‐related traps. Furthermore, we derived that trapping mechanism (2) fits our data best.This publication has 15 references indexed in Scilit:
- Two components of tunneling current in metal-oxide-semiconductor structuresApplied Physics Letters, 1983
- Effect of silicon orientation and hydrogen anneal on tunneling from Si into SiO2Journal of Applied Physics, 1983
- On tunneling in metal-oxide-silicon structuresJournal of Applied Physics, 1982
- Fowler-Nordheim electron tunneling in thin Si-SiO2-Al structuresJournal of Applied Physics, 1981
- Electron tunneling at Al-SiO2 interfacesJournal of Applied Physics, 1981
- A Method for the Determination of High-Field Conduction Laws in Insulating Films in the Presence of Charge TrappingJournal of Applied Physics, 1972
- Electrical Conduction and Dielectric Breakdown in Silicon Dioxide Films on SiliconJournal of the Electrochemical Society, 1972
- Electrochemical Charging of Thermal SiO2 Films by Injected Electron CurrentsJournal of Applied Physics, 1971
- Fowler-Nordheim Tunneling into Thermally Grown SiO2Journal of Applied Physics, 1969
- Electron emission in intense electric fieldsProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928