Neumann Expansion for Stochastic Finite Element Analysis

Abstract
With the aid of the finite element method, the present paper deals with the problem of structural response variability resulting from the spatial variability of material properties of structures, when they are subjected to static loads of a deterministic nature. The spatial variabilities are modeled as two‐dimensional stochastic fields. The finite element discretization is performed in such a way that the size of each element is sufficiently small. Then, the present paper takes advantage of the Neumann expansion technique in deriving the finite element solution for the response variability within the framework of the Monte Carlo method. The Neumann expansion technique permits more detailed comparison between the perturbation and Monte Carlo solutions for accuracy, convergence, and computational efficiency. The result from such a Monte Carlo method is also compared with that based on the commonly used perturbation method. The comparison shows that the validity of the perturbation method is limited to the c...

This publication has 17 references indexed in Scilit: