Stopped-flow analysis of Ru(bpy)33+chemiluminescent reactions

Abstract
The stopped-flow technique was employed to measure chemiluminescent emission from the reaction of a mixture of oxalate and proline with a chemiluminescence reagent, tris(2,2′-bipyridine)ruthenium(III), or Ru(bpy)33+. Ru(bpy)33+ is a versatile reagent and is often used in bioanalytical applications, including the detection of certain drugs and their metabolites, for example. Unfortunately, Ru(bpy)33+ has not yet been fully examined as a possible chemiluminescence reagent for simultaneous kinetic determinations. In this work, a differential reaction rate method, based on simple least squares regressions of the pseudo-first order decay data, was used to resolve two compounds, oxalate and proline, reacting simultaneously with Ru(bpy)33+. Our results indicate that stopped-flow analyses with Ru(bpy)33+ could provide a viable method for simultaneous determinations of unresolvable analytes of environmental and pharmaceutical importance. © 1998 John Wiley & Sons, Ltd.