A gyro-Landau-fluid transport model

Abstract
A physically comprehensive and theoretically based transport model tuned to three-dimensional (3-D) ballooning mode gyrokinetic instabilities and gyrofluid nonlinear turbulence simulations is formulated with global and local magnetic shear stabilization and E×B rotational shear stabilization. Taking no fit coefficients from experiment, the model is tested against a large transport profile database with good agreement. This model is capable of describing enhanced core confinement transport barriers in negative central shear discharges based on rotational shear stabilization. The model is used to make ignition projections from relative gyroradius scaling discharges.