WMR control via dynamic feedback linearization: design, implementation, and experimental validation

Abstract
The subject of the paper is the motion control problem of wheeled mobile robots (WMRs) in environments without obstacles. With reference to the popular unicycle kinematics, it is shown that dynamic feedback linearization is an efficient design tool leading to a solution simultaneously valid for both trajectory tracking and setpoint regulation problems. The implementation of this approach on the laboratory prototype SuperMARIO, a two-wheel differentially driven mobile robot, is described in detail. To assess the quality of the proposed controller, we compare its performance with that of several existing control techniques in a number of experiments. The obtained results provide useful guidelines for WMR control designers.