NewU-matrix theory in quantum mechanics

Abstract
We have analyzed Dyson's U-matrix theory of solving the Schrödinger equation in the interaction picture and are able to express the U matrix as a dominant term plus an infinite series involving multiple integrals of time. For a certain rather restrictive class of Hamiltonians, our theory is exact for a general time-dependent problem. For other Hamiltonians, we can only obtain approximate expressions for our U matrix and hence the wave function. Treating a time-independent problem as a special case of the time-dependent situation with a sudden-switching process, we have shown that our U matrix is exact. To demonstrate the working procedures of our theory, we apply it to study the well-known time-independent charged harmonic-oscillator problem and the more general harmonic oscillator with a time-dependent driving force. Compared with other methods, our new theory appears to lead to a result which contains more information than others due to the inclusion of noncommutability properties of operators in the operator Schrödinger equation. It has been shown that the classical Feynman path-integral formalism can be deduced from quantum mechanics with the use of the Green's-function operator. It is interesting to note that apart from a step function, the Green's-function operator is the same as that of our U(s) matrix, which is the U matrix obtained within the regime of the Schrödinger picture for a time-independent Hamiltonian, as a special case of our general time-dependent treatment.