Contrast sensitivity in humans with abnormal visual experience.

Abstract
1. Grating contrast sensitivities have been determined over a range of spatial frequencies for a normal subject and for subjects who are visually biased in that they have a lower resolution capacity for targets of specific orientations. The bias si only found in astigmatic subjects and the grating orientation yielding poorest acuity coincides with the most defocused astigmatic meridian. However this resolution anisotropy remains when optical factors are accounted for. 2. For the normal subject, high and low frequency attenuation is found and a typical reduction in contrast sensitivity is exhibited for oblique target orientations. 3. The biased subjects, called meridional amblyopes because they have reduced acuity for a given grating orientation, show markedly abnormal contrast sensitivity functions. Their cut-off spatial frequencies are different for various target orientations and this difference applies also to contrast sensitivity over nearly the entire spatial frequency range tested (0-5-16 cycles/deg). The differences are of about the same magnitude for most frequencies and they are found in all types of meridional amblyopes. 4. Optical explanations of these differences are ruled out by laser-interference fringe tests and by varying effective pupil size. 5. Theoretical effects of defocus have been calculated to compare predicted visual deprivation with performance. Results indicate that reduced contrast sensitivity functions can be equivalent to a small defocus effect. 6. To examine the results in the spatial domain, inverse Fourier transforms of representative contrast sensitivity functions have been computed. The optical portion of the resulting spatial weighting functions has been parcelled out to obtain neural spatial weighting functions.