Abstract
Recent studies reveal that metabolites of sphingomyelin are critically important for initiation and maintenance of diverse aspects of immune cell activation and function. The conversion of sphingomyelin to ceramide, sphingosine, or sphingosine-1-phosphate (S1P) provides interconvertible metabolites with distinct biological activities. Whereas ceramide and sphingosine function to induce apoptosis and to dampen mast cell responsiveness, S1P functions as a chemoattractant and can up-regulate some effector responses. Many of the S1P effects are mediated through S1P receptor family members (S1P1–5). S1P1, which is required for thymocyte emigration and lymphocyte recirculation, is also essential for Ag-induced mast cell chemotaxis, whereas S1P2 is important for mast cell degranulation. S1P is released to the extracellular milieu by Ag-stimulated mast cells, enhancing inflammatory cell functions. Modulation of S1P receptor expression profiles, and of enzymes involved in sphingolipid metabolism, particularly sphingosine kinases, are key in balancing mast cell and immune cell responses. Current efforts are unraveling the complex underlying mechanisms regulating the sphingolipid pathway. Pharmacological intervention of these key processes may hold promise for controlling unwanted immune responses.