Characterization of the output for helical delivery of intensity modulated slit beams

Abstract
The UW tomotherapy workbench utilizes a convolution/superposition based dose calculation and optimization program. It specifies the energy fluence that must be delivered from each leaf for each phantom projection angle. This requires that the spectrum of the radiation emitted from the one-dimensional MLC (multileaf collimator) attached to the linear accelerator be determined. The steps involved in that process are described. The spectrum along the central axis of the slit beam was determined, as well as the softening with off-axis position. Moreover, the magnitude of the energy-fluence output had to be quantified on a per MU (monitor unit) basis. This was done for a single leaf along the central axis of the beam. Factors, which modify that energy-fluence output, were investigated. The output increases with off-axis position due to the horns of the beam. The output for a leaf of interest will also increase if additional leaves are open due to the absence of the tongue-and-groove effect and penumbra blurring. The energy-fluence increase per leaf increase by 4.9% if an adjacent leaf is open. No other factors related to the state of additional leaves were found to significantly increase the energy-fluence output for an individual leaf.