CO2 Laser nerve welding: Optimal laser parameters and the use of solders in vitro

Abstract
To improve the welding strength, an in vitro study was performed to investigate the bonding strength of CO2 laser nerve welding (LNW), with and without the use of human albumin solution, dried albumin solution, egg white, fibrinogen solution, fibrin glue, and red blood cells as a solder. Fifteen different combinations of laser power (50, 100, and 150 mW) and pulse duration (0.1 to 3 s) were used with a spot size of 320 μm. The results have been compared to suture, fibrin glue, and laser-assisted nerve repair (LANR). The strongest welds (associated with whitening and caramelization of tissue) were produced at 100 mW with pulses of 1.0 s and at 50 mW with pulses of 3 s. The use of a dried albumin solution as a solder at 100 mW with pulses of 1 s increased the bonding strength 9-fold as compared to LNW (bonding strength 21.0 ± 8.6 g and 2.4 ± 0.9 g, respectively). However, positioning the nerves between cottons soaked in saline for 20 minutes resulted in a decrease of the bonding strength (9.8 ± 4.5 g). The use of a 20% albumin solution and egg white, both at 50 mW with pulses of 3 s, resulted in a bonding strength of, respectively, 5.7 ± 2.1 g and 7.7 ± 2.4 g. Other solders did not increase the bonding strength in comparison to LNW. The substantial increase in bonding strength for some solders suggests that it is worthwhile to investigate the dehiscence rate and nerve regeneration of solder enhanced LNW in an in vivo study.