Abstract
Multilayer perceptrons are successfully used in an increasing number of nonlinear signal processing applications. The backpropagation learning algorithm, or variations hereof, is the standard method applied to the nonlinear optimization problem of adjusting the weights in the network in order to minimize a given cost function. However, backpropagation as a steepest descent approach is too slow for many applications. In this paper a new learning procedure is presented which is based on a linearization of the nonlinear processing elements and the optimization of the multilayer perceptron layer by layer. In order to limit the introduced linearization error a penalty term is added to the cost function. The new learning algorithm is applied to the problem of nonlinear prediction of chaotic time series. The proposed algorithm yields results in both accuracy and convergence rates which are orders of magnitude superior compared to conventional backpropagation learning.

This publication has 18 references indexed in Scilit: