Surface tension of animal cartilage as it relates to friction in joints

Abstract
Measurements of the surface tension of articular cartilage and friction experiments were carried out to provide further evidence in support of a new theory regarding the mechanism of friction in joints. To determine the surface tension of cartilage, contact angle measurements were used in conjunction with the equation of state for interfacial tensions. The advancing contact angle between saline drops and articular cartilage was found to be 100°±5°, indicating a highly hydrophobic surface. The corresponding surface tension value was calculated to be 22.5 ergs/cm2. Friction of cartilage against hydrophobic surfaces is shown to be lower than the friction of cartilage against hydrophilic surfaces. All these results further support the theory that lubrication by nonwetting drops occurs in joints and may be responsible for the exceptional friction characteristics of the joints.