Effects of NaCl salinity on miniature dwarf tomato ‘Micro‐Tom’: II. Shoot and root growth responses, fruit production, and osmotic adjustment1

Abstract
The growth and production of miniature dwarf tomato selection Lycopersicon esculentum ’Micro‐Tom’ plants grown from seedling to harvest in solution batph culture’ at four different NaCl salinity levels (2.4 [control, no NaCl], 7.6, 12.8, or 18 dS‐m‐1 solution conductivities) was monitored. Incremental reductions in canopy extent and shoot area of ‘Micro‐Tom’ were observed with increasing solution NaCl level. Root growth and shoot height were somewhat less responsive to imposed salinity. Fruit number, fruit size, and leaf tissue osmotic potential decreased as NaCl concentration increased. Fruit yield was highly correlated with total canopy and shoot area, but not with tissue osmotic or total water potential. ‘Micro‐Tom’ plants survived and continued fruit production at higher salinity levels despite reduced canopy growth. Treatment effects on vegetative growth and fruit production became more pronounced later in the growth cycle.