Optical Properties of Vbetween 0.25 and 5 eV
- 15 August 1968
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 172 (3) , 788-798
- https://doi.org/10.1103/physrev.172.788
Abstract
The optical constants of V have been determined between 0.25 and 5 eV both below and above the semiconductor-metal transition temperature K. Reflectivity and transmission spectra have been measured on both single crystals and than films. The reflectivity spectra of the bulk crystals were measured with E ⊥ ( axis) in the tetragonal phase [or ⊥ ( axis) in the monoclinic phase], and with E parallel to these axes. While there are some differences in magnitude between the dielectric constants obtained from thin-film and single-crystal measurements, the structural features are in good agreement. Below there are four prominent absorption peaks centered near photon energies of 0.85, 1.3, 2.8, and 3.6 eV. Above , metallic free-carrier absorption is observed below 2.0 eV, but the same two absorption peaks near 3 and 4 eV are present. The energy location and polarization dependence of these two higher energy peaks can be related to similar absorption peaks in rutile, and are interpreted using the rutile band structure. The results are consistent with a picture in which filled bands arising primarily from oxygen orbitals are separated by approximately 2.5 eV from partially filled bands arising primarily from vanadium orbitals. Transitions from the filled bands are responsible for the high-energy peaks in the optical absorption in both the high- and low-temperature phases. In the high-temperature metallic phase, there is evidence that there is overlap among the bands such that at least two bands are partially occupied by the extra electron per vanadium ion. In the low-temperature semiconductor phase, a band gap of approximately 0.6 eV opens up within the bands, separating two filled bands from higher-lying empty bands. The two absorption peaks at 0.85 and 1.3 eV are due to transitions from these two filled bands.
Keywords
This publication has 21 references indexed in Scilit:
- On the electronic phase transitions in the lower oxides of vanadiumJournal of Physics C: Solid State Physics, 1968
- Domain Structure and Twinning in Crystals of Vanadium DioxideJournal of Applied Physics, 1967
- Electron Transport in Single-Domain, Ferroelectric Barium TitanatePhysical Review B, 1967
- REACTIVELY SPUTTERED VANADIUM DIOXIDE THIN FILMSApplied Physics Letters, 1967
- Theory of Semiconductor-To-Metal TransitionsPhysical Review B, 1967
- Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition TemperaturePhysical Review Letters, 1966
- Effect of Strong Electric Fields on the Electroreflectance Spectrum of Conducting Ferroelectric CrystalsPhysical Review Letters, 1966
- Electronic Energy Bands in Strontium TitanatePhysical Review B, 1964
- Superconductivity in Semiconducting SrTiPhysical Review Letters, 1964
- Optical constants, heat capacity and the fermi surfacePhilosophical Magazine, 1958