Abstract
The effect of the following embedding procedures on the acid and alkaline phosphatase content of decalcified mouse tibiae has been studied: embedding in 23% gelatine for 18 hr at 37° C, embedding in paraffin wax in vacuo for 1 hr at 58° C, and impregnation with 4% celloidin in diethyl ether and ethanol at 4° C for 2-3 days. Unsupported tissues were also used to demonstrate these enzymes for comparison with the above procedures. Tibiae were first fixed in 10% neutral formalin at 4° C for 15 hr, decalcified in equal volumes of 2% formic acid and 20% sodium citrate at pH 4.9 for not more than 5 days and then washed in distilled water before carrying out the embedding schedules. The celloidin-impregnated tibiae were placed in 70% ethanol to harden the celloidin and then washed in distilled water for 1-2 hr. These tibiae and those embedded in gelatine were cast in a gelatine block which was then hardened in 10% neutral formalin at 4° C for 2 hr. Sections of these and unsupported tibiae were cut at 15 μ on a freezing microtome. Decalcified tibiae embedded and blocked in paraffin wax were sectioned at 15 μ on a base sledge microtome. The enzymes were demonstrated using the coupling azo dye method given by Pearse (Histochemistry, 1st Ed. 1954). The stable diazotates of 4 benzoyl amino 2-5 diethoxyanilene, 3 nitro toluidine and o-dianisidine were used. Of the embedding procedures paraffin wax embedding produced the greatest loss of both enzymes. Gelatine embedding and infiltration with celloidin were equally good for the demonstration of acid phosphatase but for alkaline phosphatase the celloidin method was superior. The gelatine embedded material did not produce consistently good results. Celloidin-impregnated tibiae could be stored without marked deterioration of the enzyme content for longer than gelatine-embedded tibiae.