Rapid Screening of Aqueous Chemical Warfare Agent Degradation Products: Ambient Pressure Ion Mobility Mass Spectrometry

Abstract
The use of electrospray ionization ambient pressure ion mobility spectrometry with an orthogonal reflector time-of-flight mass spectrometer to analyze chemical warfare (CW) degradation products from aqueous environmental samples has been demonstrated. Certified reference materials of analytical standards for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention treaty verification were used in this study. A combination of six G/V-type nerve and four S-type vesicant related CW agent degradation products were separated with baseline resolution by this instrumental technique. Analytical figures of merit for each CW degradation product were determined. In some cases, reduced mobility constants (Ko) have been reported for the first time. Linear response ranges for the selected CW degradation products were found to be generally ∼2 orders of magnitude, where the overall dynamic response ranges were found to extend to 4 orders of magnitude. Limits of detection for five of the nine chemical products tested were found to be less than 1 ppm. To demonstrate the potential of this instrumental method with complex mixtures, four CW degradation products were separated and detected from a spiked Palouse River water sample in less than 1 min. Finally, a homologous series of n-alkylamines were used as baseline reference standards, producing a mobility/mass trend line to which the CW degradation products could be compared. Comparison of these products in this manner is expected to reduce the number of false positive/negative responses.