TheCaenorhabditis elegans unc-64Locus Encodes a Syntaxin That Interacts Genetically with Synaptobrevin
- 1 June 1998
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 9 (6) , 1235-1252
- https://doi.org/10.1091/mbc.9.6.1235
Abstract
We describe the molecular cloning and characterization of theunc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63–64% identity to human syntaxin 1A, a membrane- anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their C-terminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those ofDrosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion.Keywords
This publication has 87 references indexed in Scilit:
- Hemizygous Deletion of the Syntaxin 1A Gene in Individuals with Williams SyndromeAmerican Journal of Human Genetics, 1997
- Syntaxin and synaptobrevin function downstream of vesicle docking in drosophilaNeuron, 1995
- Identification of Four Different Forms of Syntaxin 3Biochemical and Biophysical Research Communications, 1995
- The effect on synaptic physiology of synaptotagmin mutations in drosophilaNeuron, 1994
- Neurotransmission: harnessing fusion machinery at the synapseTrends in Neurosciences, 1994
- SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex.The Journal of cell biology, 1992
- Control of Larval Development by Chemosensory Neurons in Caenorhabditis elegansScience, 1991
- A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegansGene, 1990
- Tissue-specific synthesis of yolk proteins in Caenorhabditis elegansDevelopmental Biology, 1983
- Fine structure of the Caenorhabditis elegans secretory—excretory systemJournal of Ultrastructure Research, 1983