Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation
- 24 January 2006
- journal article
- letter
- Published by Springer Nature in Nature Cell Biology
- Vol. 8 (3) , 293-299
- https://doi.org/10.1038/ncb1365
Abstract
The initial differential treatment of the two X chromosomes during X-chromosome inactivation is controlled by the X-inactivation centre (Xic). This locus determines how many X chromosomes are present in a cell ('counting') and which X chromosome will be inactivated in female cells ('choice'). Critical control sequences in the Xic include the non-coding RNAs Xist and Tsix, and long-range chromatin elements. However, little is known about the process that ensures that X inactivation is triggered appropriately when more than one Xic is present in a cell. Using three-dimensional fluorescence in situ hybridization (FISH) analysis, we showed that the two Xics transiently colocalize, just before X inactivation, in differentiating female embryonic stem cells. Using Xic transgenes capable of imprinted but not random X inactivation, and Xic deletions that disrupt random X inactivation, we demonstrated that Xic colocalization is linked to Xic function in random X inactivation. Both long-range sequences and the Tsix element, which generates the antisense transcript to Xist, are required for the transient interaction of Xics. We propose that transient colocalization of Xics may be necessary for a cell to determine Xic number and to ensure the correct initiation of X inactivation.Keywords
This publication has 21 references indexed in Scilit:
- Tsix Silences Xist through Modification of Chromatin StructureDevelopmental Cell, 2005
- Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivationGenes & Development, 2005
- Interchromosomal associations between alternatively expressed lociNature, 2005
- Identification of Developmentally Specific Enhancers for Tsix in the Regulation of X Chromosome InactivationMolecular and Cellular Biology, 2005
- The Function of Nuclear Architecture: A Genetic ApproachAnnual Review of Genetics, 2004
- Active genes dynamically colocalize to shared sites of ongoing transcriptionNature Genetics, 2004
- Does looping and clustering in the nucleus regulate gene expression?Current Opinion in Cell Biology, 2004
- Differential Histone H3 Lys-9 and Lys-27 Methylation Profiles on the X ChromosomeMolecular and Cellular Biology, 2004
- Homologous Association of Oppositely Imprinted Chromosomal DomainsScience, 1996
- Requirement for Xist in X chromosome inactivationNature, 1996