Abstract
The interaction of eddies with variations in topography, together with a tendency for large-scale wave propagation, generates a systematic stress which acts upon large-scale mean flows. This stress resists the midlatitude tropospheric westerlies, resists the oceanic Antarctic Circumpolar Current, and may be a dominant mechanism in driving coastal undercurrents. Associated secondary circulation provides a systematic upwelling in coastal oceans, pumping deeper water onto continental shelf areas. The derivation rests in turbulence closure theory and is supported by numerical experiments.