Linear canonical transformations of coherent and squeezed states in the Wigner phase space. II. Quantitative analysis
- 1 July 1989
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 40 (2) , 902-912
- https://doi.org/10.1103/physreva.40.902
Abstract
It is possible to calculate expectation values and transition probabilities from the Wigner phase-space distribution function. Based on the canonical transformation properties of the Wigner function, an algorithm is developed for calculating these quantities in quantum optics for coherent and squeezed states. It is shown that the expectation value of a dynamical variable can be written in terms of its vacuum expectation value of the canonically transformed variable. Parallel-axis theorems are established for the photon number and its variant. It is also shown that the transition probability between two squeezed states can be reduced to that of the transition from one squeezed state to vacuum.Keywords
This publication has 31 references indexed in Scilit:
- Squeezed-reservoir lasersPhysical Review A, 1988
- Area of overlap and interference in phase space versus Wigner pseudoprobabilitiesPhysical Review A, 1988
- Pseudospin approach to the dynamics and squeezing of SU(2) and SU(1, 1) coherent statesJournal of the Optical Society of America B, 1988
- Coordinate representation of squeezed statesPhysical Review A, 1988
- Preparation, measurement and information capacity of optical quantum statesReviews of Modern Physics, 1986
- The semiclassical evolution of wave packetsPhysics Reports, 1986
- The Wigner distribution function—50th birthdayFoundations of Physics, 1983
- Quantum-mechanical noise in an interferometerPhysical Review D, 1981
- On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principleReviews of Modern Physics, 1980
- On the Quantum Correction For Thermodynamic EquilibriumPhysical Review B, 1932