Development of ferroelectric Pb(ZrxTi1−x)O3thin films by metallo-organic decomposition process and rapid thermal annealing

Abstract
Polycrystalline Pb(Zr0.5Ti0.5)O3 thin films with good ferroelectric properties have been prepared by metallo-organic decomposition (MOD) process, using acetate-based precursors, and followed by two different kinds of annealing process, independently, including oven annealing and rapid thermal annealing (RTA). The experimental procedures were described for the films deposited on Pt-coated silicon substrates. There were distinct differences between oven annealing and RTA process, in terms of structures, morphologies, and electrical properties of the films. The films with RTA process showed denser and smoother surface, finer grain sizes, and much higher dielectric constant (1200–1400), remnant polarization of 30–35 μC/cm2 and lower coercive field of 65–85 kv/cm in the entire annealing temperature range of this study. At an annealing temperature of 550°C, RTA processed films showed identical XRD patterns of perovskite phase and clear ferroelectricity; however, it was not possible to realize the perovskite structure and ferroelectricity in the films oven-annealed at that temperature. These acetate-derived PZT films with RTA process were reproducible, showed high quality in uniformity and homogeneity.