Antagonistic coevolution with parasites maintains host genetic diversity: an experimental test
- 4 August 2010
- journal article
- Published by The Royal Society in Proceedings Of The Royal Society B-Biological Sciences
- Vol. 278 (1703) , 218-224
- https://doi.org/10.1098/rspb.2010.1211
Abstract
Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane's hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane's original hypothesis 60 years after its conception.Keywords
This publication has 37 references indexed in Scilit:
- Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasiteProceedings of the National Academy of Sciences, 2010
- Evolution of host resistance and trade‐offs between virulence and transmission potential in an obligately killing parasiteJournal of Evolutionary Biology, 2009
- THE COST OF BEING COMMON: EVIDENCE FROM NATURALDAPHNIAPOPULATIONSEvolution, 2009
- NONADDITIVE GENETIC COMPONENTS IN RESISTANCE OF THE RED FLOUR BEETLETRIBOLIUM CASTANAEUMAGAINST PARASITE INFECTIONEvolution, 2008
- Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheepBiology Letters, 2008
- The genetic architecture of susceptibility to parasitesBMC Ecology and Evolution, 2008
- genalex 6: genetic analysis in Excel. Population genetic software for teaching and researchMolecular Ecology Notes, 2005
- Disease ecology in the Galápagos Hawk ( Buteo galapagoensis ): host genetic diversity, parasite load and natural antibodiesProceedings Of The Royal Society B-Biological Sciences, 2005
- Selection by parasites may increase host recombination frequencyBiology Letters, 2005
- Parasite-mediated heterozygote advantage in an outbred songbird populationBiology Letters, 2005