In situ x-ray microscopic observation of the electromigration in passivated Cu interconnects

Abstract
X-ray imaging of electromigration in a passivated Cu interconnect was performed with 100-nm spatial resolution. A time sequence of 200 images, recorded with the European Synchrotron Radiation Facility x-ray microscope in 2.2 h at 4 keV photon energy, visualizes the mass flow of Cu at current densities up to 2×107 A/cm2. Due to the high penetration power through matter and the element specific image contrast, x-ray microscopy is a unique tool for time-resolved, quantitative mass transport measurements in interconnects. Model calculations predict that failures in operating microprocessors are detectable with 30 nm resolution by nanotomography.