Ontogenetic development of neural responses in the olfactory bulb of laboratory mice

Abstract
In laboratory mice (strain NMRI) the ontogenetic development of single unit activity in the olfactory bulb was investigated. From postnatal day 10 on, spontaneously active neurons were recorded with glass-microelectrodes, and their responses to olfactory stimuli were tested (butyric acid, geraniol, grass- and nest-odour). From day 10 to 13 only very few neurons were recordable (and most of these elements were too weak and were lost before being stimulated). At day 14 the number of recordable neurons increased rapidly, and by day 15 spontaneously active neurons reached adult level in terms of incidence and electric properties. There were 3 types of neurons: 1. respiration synchronous elements; 2. bursting neurons not correlated with respiration; 3. continuously, but randomly, firing elements (about 60% of all neurons). Reactions to odour stimuli (excitation, ca. 50%; inhibition, ca. 34%; complex reactions, ca. 12%; change in activity pattern, ca. 4%) occurred as soon as the cells were stable enough for testing. The reaction patterns showed no age specific differences; the duration of the responses varied from 100 ms to 100 s. In younger animals (P11–P14) the percentage of responses was slightly smaller (47%) than in the older ones (P30–P50; 64% response to olfactory stimulation). For some of the odours tested the proportion of responding cells differed depending on age (for instance grass odour evoked a response in 40% of the cells in young ones, but in 65% in adults).