Physical, biologic, and phenotypic properties of natural regulatory cells in murine bone marrow

Abstract
A lymphocyte-enriched fraction of murine bone marrow (BML) contains natural regulatory cells (NRC) that can inhibit, on a dose-dependent basis, proliferative and cytotoxic responses to alloantigens in a mixed lymphocyte culture. The objective of this study was to investigate the characteristics of the cells responsible for this phenomenon in CBA mice. Maximal suppression was obtained with BML cells themselves rather than cell products. Light-scatter analysis of NRC on the fluorescence-activated cell sorter demonstrated them to be larger than small lymphocytes, and their sedimentation in discontinuous Percoll gradients showed the cells to be of heterogeneous density. This heterogeneity is further reflected by the fact that both plastic adherent and nonadherent BML are suppressive. NRC must be viable in order to mediate suppression; they are cortisone-resistant and are not affected by doses of gamma irradiation up to 1,000 R. NRC are not T or B lymphocytes or Ia-bearing macrophages. The involvement of mature granulocytes and macrophages in natural suppression is unlikely in that NRC do not bear Fc receptors. Elimination of cells from BML with the natural killer (NK) surface marker Asialo GM1 does not abrogate suppression. NRC are capable of mediating suppression across major and minor histocompatibility complex barriers. While lymphoid cells are prominent in BML, the contamination of this marrow fraction with immature granulocytes and monocytes makes a morphologic identification of NRC difficult. These characteristics are most consistent with NRC begin immature marrow cells of undetermined lineage. The relationship of NRC to naturally occurring marrow suppressor cells described in other systems is not yet clear and awaits experimental clarification.

This publication has 32 references indexed in Scilit: