Correlations of Alkylating Activity and Mutagenicity in Bacteria of Cytostatic Drugs

Abstract
Alkylating activity of cytostatic drugs was studied in relation to their mutagenicity and toxicity in E. coli WP2 uvrA. Four classes of directly acting cytostatic drugs were studied: nitrogen mustards (nitrogen mustard, melphalan, chlorambucil and phosphoramide mustard, a metabolite of cyclophosphamide), ethyleneimine derivatives (Thio‐TEPA, TEPA and triethylenemelamine), busulfan, and halogenated nitrosoureas. The reference compounds included methyl methanesulfonate, ethyleneimine and methylnitrosourea. Guanosine alkylation was determined by fluorometry. The rate of guanosine and nitrobenzylpyridine alkylation agreed well. Nitrogen mustard derivatives and triethylenemelamine were the most potent alkylating agents among the cytostatic drugs; nitrogen mustard was 5 to 10 times more active than methyl methanesulfonate. Ethyleneimine derivatives, busulfan and the nitrosoureas were relatively weak alkylating agents. Nitrogen mustard and triethylenemelamine were the most potent mutagens to bacteria; they were also among the most toxic drugs studied.

This publication has 23 references indexed in Scilit: