Crystal-field splitting and charge flow in the buckled-dimer reconstruction of Si(100)2×1

Abstract
The effect of the 2×1 reconstruction on the core-electron binding energies of the outermost Si(100) layers has been determined using high-resolution photoemission data. A previously unobserved 190-meV crystal-field splitting is resolved for the up-atoms of the asymmetric surface dimers, whose average core-level shift is -400 meV. The signal from the down-atoms is clearly identified and has a shift of +220 meV. These new findings indicate a charge flow of ∼0.05e from the subsurface to the surface layers, with a substantially larger difference of ∼0.34e between the up-atoms and down-atoms in the dimer.