Catecholamine Effects on Testicular Testosterone Production in the Gonadally Active and the Gonadally Regressed Adult Golden Hamster1
- 1 April 1989
- journal article
- research article
- Published by Oxford University Press (OUP) in Biology of Reproduction
- Vol. 40 (4) , 752-761
- https://doi.org/10.1095/biolreprod40.4.752
Abstract
Several lines of evidence support a role of testicular innervation and peripheral catecholamines in the control of male gonadal function, particularly before puberty. It was therefore of interest to compare the effects of catecholamines on androgen production during the periods of gonadal activity and quiescence in a seasonally breeding species. We have examined direct effects of epinephrine (EPI), norepinephrine (NE), the beta-adrenergic agonist isoproterenol (ISO), and the alpha-adrenergic agonist phenylephrine (PHE) on testicular testosterone (T) production in hamsters with gonadal regression induced by 12 wk exposure to short photoperiod (SD) and in gonadally active hamsters maintained in long photoperiod (LD). Fragments of decapsulated testes were incubated with various combinations of these catecholamines (10(-5)-10(-9) M), human chorionic gonadotropin (hCG; 3.1 mIU/ml), the beta-receptor antagonist propranolol (10(-5) M) and the alpha-l-receptor antagonist prazosin (10(-5) M), for 6 h. In the incubations of testes from LD hamsters, the accumulation of T in the medium was stimulated by hCG but not affected by either catecholamine. However, EPI, NE, and PHE at 10(-5) M, but not ISO, augmented the stimulation of T by hCG. In sharp contrast to these findings, T production by the regressed testes of SD animals was stimulated by EPI (at 10(-8)-10(-5) M), NE (at 10(-6)-10(-5) M), and PHE (at 10(-6)-10(-5) M) in a dose-related manner, but unaffected by ISO. These stimulatory effects were prevented by prazosin, but not by propranolol. Moreover, 10(-5) M of EPI, NE, and PHE augmented the stimulatory effect of hCG on T production. We conclude that the seasonal transition from gonadal activity to quiescence in the adult golden hamster is accompanied by a major increase in the responsiveness of testicular steroidogenesis to catecholamines acting via the alpha-1-adrenoreceptor and that catecholamines can modulate Leydig cell response to gonadotropins in this species. These findings could be related to up-regulation of the alpha-1-receptor in the testis of the SD animal and suggest that catecholamines may be involved in the regulation of the testis during physiological suppression of gonadotropin release and during stress.Keywords
This publication has 24 references indexed in Scilit:
- Depending on the Dose 6-OHDA Stimulates or Inhibits the Testis of Immature RatsExperimental and Clinical Endocrinology & Diabetes, 1984
- Ontogeny of Rodent Testicular Androgen Production in Response to Isoproterenol and Luteinizing Hormone In VitroBiology of Reproduction, 1984
- Testicular Recrudescence in the Golden Hamster (Mesocricetus auratus): A Possible Model of Sexual Maturation*Endocrinology, 1984
- Effect of Unilateral Orchidectomy on Plasma FSH Concentration: Evidence for a Direct Neural Connection between Testes and CNSNeuroendocrinology, 1983
- β-Adrenergic Agonist Induced Androgen Production during Primary Culture of Mouse Leydig CellsArchives of Andrology, 1983
- Catecholamine stimulation of testosterone production via cyclic AMP in mouse leydig cells in monolayer cultureMolecular and Cellular Endocrinology, 1982
- Identification and characterization of a β1-adrenergic receptor in the rat sertoli cellMolecular and Cellular Endocrinology, 1981
- Testicular Innervation is Necessary for the Response of Plasma Testosterone Levels to Acute Stress1Biology of Reproduction, 1981
- THE EFFECTS OF LH, ADRENALINE AND NORADRENALINE ON TESTICULAR BLOOD FLOW AND PLASMA TESTOSTERONE CONCENTRATIONS IN ANAESTHETIZED RATSActa Endocrinologica, 1978
- THE EFFECT OF EPINEPHRINE ON TESTOSTERONE PRODUCTIONActa Endocrinologica, 1967