Abstract
We propose a phenomenological theory that accounts for entropic effects due to loop formation to predict pathways in the kinetics of protein folding. The theory, the basis of which lies in multiple folding pathways and a three-stage kinetics, qualitatively reproduces most of the kinetic measurements in the refolding of bovine pancreatic trypsin inhibitor. The resulting pathways show that nonnative kinetic transients are involved in the productive routes leading to the formation of native intermediates. Our theory emphasizes the importance of the random origin of chain folding initiation structures in directing protein folding.