Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide
Top Cited Papers
- 1 October 2001
- journal article
- Published by Wiley in British Journal of Pharmacology
- Vol. 134 (4) , 845-852
- https://doi.org/10.1038/sj.bjp.0704327
Abstract
(−)‐Cannabidiol (CBD) is a non‐psychotropic component of Cannabis with possible therapeutic use as an anti‐inflammatory drug. Little is known on the possible molecular targets of this compound. We investigated whether CBD and some of its derivatives interact with vanilloid receptor type 1 (VR1), the receptor for capsaicin, or with proteins that inactivate the endogenous cannabinoid, anandamide (AEA). CBD and its enantiomer, (+)‐CBD, together with seven analogues, obtained by exchanging the C‐7 methyl group of CBD with a hydroxy‐methyl or a carboxyl function and/or the C‐5′ pentyl group with a di‐methyl‐heptyl (DMH) group, were tested on: (a) VR1‐mediated increase in cytosolic Ca2+ concentrations in cells over‐expressing human VR1; (b) [14C]‐AEA uptake by RBL‐2H3 cells, which is facilitated by a selective membrane transporter; and (c) [14C]‐AEA hydrolysis by rat brain membranes, which is catalysed by the fatty acid amide hydrolase. Both CBD and (+)‐CBD, but not the other analogues, stimulated VR1 with EC50=3.2 – 3.5 μM, and with a maximal effect similar in efficacy to that of capsaicin, i.e. 67 – 70% of the effect obtained with ionomycin (4 μM). CBD (10 μM) desensitized VR1 to the action of capsaicin. The effects of maximal doses of the two compounds were not additive. (+)‐5′‐DMH‐CBD and (+)‐7‐hydroxy‐5′‐DMH‐CBD inhibited [14C]‐AEA uptake (IC50=10.0 and 7.0 μM); the (−)‐enantiomers were slightly less active (IC50=14.0 and 12.5 μM). CBD and (+)‐CBD were also active (IC50=22.0 and 17.0 μM). CBD (IC50=27.5 μM), (+)‐CBD (IC50=63.5 μM) and (−)‐7‐hydroxy‐CBD (IC50=34 μM), but not the other analogues (IC50>100 μM), weakly inhibited [14C]‐AEA hydrolysis. Only the (+)‐isomers exhibited high affinity for CB1 and/or CB2 cannabinoid receptors. These findings suggest that VR1 receptors, or increased levels of endogenous AEA, might mediate some of the pharmacological effects of CBD and its analogues. In view of the facile high yield synthesis, and the weak affinity for CB1 and CB2 receptors, (−)‐5′‐DMH‐CBD represents a valuable candidate for further investigation as inhibitor of AEA uptake and a possible new therapeutic agent. British Journal of Pharmacology (2001) 134, 845–852; doi:10.1038/sj.bjp.0704327Keywords
This publication has 55 references indexed in Scilit:
- Characterization of palmitoylethanolamide transport in mouse Neuro‐2a neuroblastoma and rat RBL‐2H3 basophilic leukaemia cells: comparison with anandamideBritish Journal of Pharmacology, 2001
- Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin ReceptorScience, 2000
- The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing StimuliNeuron, 1998
- Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amidesNature, 1996
- Formation and inactivation of endogenous cannabinoid anandamide in central neuronsNature, 1994
- Anxiolytic effect of cannabidiol derivatives in the elevated plus-mazeGeneral Pharmacology: The Vascular System, 1994
- Isolation and Structure of a Brain Constituent That Binds to the Cannabinoid ReceptorScience, 1992
- A novel probe for the cannabinoid receptorJournal of Medicinal Chemistry, 1992
- Enantiomeric cannabinoids: stereospecificity of psychotropic activityCellular and Molecular Life Sciences, 1988
- Antiepileptic Potential of Cannabidiol AnalogsThe Journal of Clinical Pharmacology, 1981