Abstract
We study the feasibility of detecting noncommutative (NC) QED through neutral Higgs boson (H) pair production at linear colliders (LC). This is based on the assumption that H interacts directly with photon in NCQED as suggested by symmetry considerations and strongly hinted by our previous study on π0-photon interactions. We find the following striking features as compared to the standard model (SM) result: (1) generally larger cross sections for an NC scale of order 1 TeV; (2) completely different dependence on initial beam polarizations; (3) distinct distributions in the polar and azimuthal angles; and (4) day-night asymmetry due to the Earth’s rotation. These will help to separate NC signals from those in the SM or other new physics at LC. We emphasize the importance of treating properly the Lorentz noninvariance problem and show how the impact of the Earth’s rotation can be used as an advantage for our purpose of searching for NC signals.