Abstract
The fluorochrome sulphorhodamine G, when present in the transpiration stream in wheat leaves, passes rapidly out of the veins and produces fluorescence in the mesophyll and epidermal cell walls. The path of movement of the dye out of the tracherary elements and across the mestome sheath to the parenchyma sheath cells was followed by rapid freezing, freeze‐subsitution, dry embedding in resin, sectioning and epifluorescence microscopy. The sulphorhodamine solution was visible in tracheary elements, and, where it had passed out of the tracheary elements, strongly fluorescent in some of the cell walls. The patterns of wall fluorescence are used to chart the movements of water from the xylem through some of the radial walls of mestome sheath cells near the xylem to the free space of the mesophyll. The suberised lamellae of the mestome sheath cells must form an incomplete barrier near the xylem to permit passage of the dye. A hypothesis is formulated that the function of the suberised lamellae is to keep separate the oppositely directed fluxes of water and assimilates through the sheath. It is further proposed that the function of pits in living cells is a similar insulation of the symplastic traffic from the wayward waters of the apoplast.