Dihedral angles between alveolar septa

Abstract
To determine the dihedral angle, alpha, at the characteristic three-way septal junctions of lung parenchyma, we examined photomicrographs of sections. The three angles, A, formed where three septal traces meet on section, were measured and found to range between approximately 50 and 170 degrees. Theoretical considerations predicted that the dispersion of alpha is much narrower than that of A. The mean of A and alpha is identically 120 degrees. The standard deviation of alpha was inferred from the cumulative distribution function of A. In lungs inflated to 30 cmH2O (VL30), the standard deviation of alpha was very small (approximately 2 degrees) and increased to approximately 6 degrees in lungs inflated to 0.4 VL30. These findings imply that at VL30 tensions exerted by septa are locally homogeneous (2% variation) and at lower lung volumes become less so (6% variation). At high distending pressures, tissue forces are thought to dominate interfacial forces, and therefore the local uniformity of tensions suggests a stress-responsive mechanism for forming or remodeling the connective tissues. The source of the local nonuniformity at lower volumes is unclear but could relate to differences in mechanical properties of alveolar duct and alveoli. Finally, local uniformity does not imply global uniformity.