Electrocatalytic CO 2 Conversion to Oxalate by a Copper Complex

Abstract
Oxalate from Air: In light of increasing concerns about the consequences of excessive atmospheric carbon dioxide, there is demand for methods to use carbon dioxide in the preparation of more elaborate compounds. Though reactions with hydroxide salts to form carbonates tend to proceed fairly cleanly, reductive processes to form carboxylic acids, esters, and alcohols are often rather unselective. Angamuthu et al. (p. 313 ; see the news story by Service ) discovered that a copper complex exhibited remarkable selectivity in reductively coupling carbon dioxide to form oxalate through coordinative electron transfer, even in the presence of excess oxygen, normally a much more potent electron acceptor. Precipitation of the oxalate as a lithium salt and electrochemical re-reduction of the copper produced a preliminary catalytic cycle, demonstrated through six turnovers.

This publication has 23 references indexed in Scilit: