Abstract
Using anEscherichia coli-grown plasmid vector encoding a fragment of thioredoxin (Trx) fused to a central region (amino acids 128 to 229) of the respiratory syncytial virus (RSV) (Long strain) G protein, we employed site-directed mutagenesis to investigate the importance of selected amino acids to vaccine efficacy. Mice were immunized with a total of 10 wild-type or mutant Trx-G proteins and challenged intranasally with RSV. Striking differences in the induction of RSV G-protein-specific antibodies, protection against RSV challenge, cytokine RNA responses, and induction of RSV-associated eosinophilic inflammation were observed among the mutant proteins examined. Taken together, the results identify a critical role for specific amino acids in the induction of protective immunity and priming for eosinophilia against RSV.

This publication has 33 references indexed in Scilit: