Functions of the C-Terminal Domain of Varicella-Zoster Virus Glycoprotein E in Viral Replication In Vitro and Skin and T-Cell Tropism In Vivo
Open Access
- 15 November 2004
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 78 (22) , 12406-12415
- https://doi.org/10.1128/jvi.78.22.12406-12415.2004
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for VZV replication. To further analyze the functions of gE in VZV replication, a full deletion and point mutations were made in the 62-amino-acid (aa) C-terminal domain. Targeted mutations were introduced in YAGL (aa 582 to 585), which mediates gE endocytosis, AYRV (aa 568 to 571), which targets gE to the trans -Golgi network (TGN), and SSTT, an “acid cluster” comprising a phosphorylation motif (aa 588 to 601). Substitutions Y582G in YAGL, Y569A in AYRV, and S593A, S595A, T596A, and T598A in SSTT were introduced into the viral genome by using VZV cosmids. These experiments demonstrated a hierarchy in the contributions of these C-terminal motifs to VZV replication and virulence. Deletion of the gE C terminus and mutation of YAGL were lethal for VZV replication in vitro. Mutations of AYRV and SSTT were compatible with recovery of VZV, but the AYRV mutation resulted in rapid virus spread in vitro and the SSTT mutation resulted in higher virus titers than were observed for the parental rOka strain. When the rOka-gE-AYRV and rOka-gE-SSTT mutants were evaluated in skin and T-cell xenografts in SCIDhu mice, interference with TGN targeting was associated with substantial attenuation, especially in skin, whereas the SSTT mutation did not alter VZV infectivity in vivo. These results provide the first information about how targeted mutations of this essential VZV glycoprotein affect viral replication in vitro and VZV virulence in dermal and epidermal cells and T cells within intact tissue microenvironments in vivo.Keywords
This publication has 61 references indexed in Scilit:
- The Immediate-Early 63 Protein of Varicella-Zoster Virus: Analysis of Functional Domains Required for Replication In Vitro and for T-Cell and Skin Tropism in the SCIDhu Model In VivoJournal of Virology, 2004
- Mutational Analysis of Open Reading Frames 62 and 71, Encoding the Varicella-Zoster Virus Immediate-Early Transactivating Protein, IE62, and Effects on Replication In Vitro and in Skin Xenografts in the SCID-hu Mouse In VivoJournal of Virology, 2003
- Differentiation of Varicella-Zoster Virus ORF47 Protein Kinase and IE62 Protein Binding Domains and Their Contributions to Replication in Human Skin Xenografts in the SCID-hu MouseJournal of Virology, 2003
- Promoter Sequences of Varicella-Zoster Virus Glycoprotein I Targeted by Cellular Transactivating Factors Sp1 and USF Determine Virulence in Skin and T Cells in SCIDhu Mice In VivoJournal of Virology, 2003
- Tropism of Varicella-Zoster Virus for Human Tonsillar CD4+T Lymphocytes That Express Activation, Memory, and Skin Homing MarkersJournal of Virology, 2002
- Phosphorylation by the Varicella-Zoster Virus ORF47 Protein Serine Kinase Determines whether Endocytosed Viral gE Traffics to the trans- Golgi Network or Recycles to the Cell MembraneJournal of Virology, 2002
- Glycoprotein I of Varicella-Zoster Virus Is Required for Viral Replication in Skin and T CellsJournal of Virology, 2002
- Varicella-Zoster Virus gB and gE Coexpression, but Not gB or gE Alone, Leads to Abundant Fusion and Syncytium Formation Equivalent to Those from gH and gL CoexpressionJournal of Virology, 2001
- Essential Role Played by the C-Terminal Domain of Glycoprotein I in Envelopment of Varicella-Zoster Virus in the trans -Golgi Network: Interactions of Glycoproteins with TegumentJournal of Virology, 2001
- The Complete DNA Sequence of Varicella-Zoster VirusJournal of General Virology, 1986