ALKYLATING-AGENTS - INVITRO STUDIES OF CROSS-RESISTANCE PATTERNS IN HUMAN CELL-LINES

  • 1 September 1986
    • journal article
    • research article
    • Vol. 46  (9) , 4379-4383
Abstract
The alkylating agents represent one of the most important classes of antitumor agents and play a major role in combination with other agents in the curvative chemotherapy of selected human cancers. By repeatedly exposing cells to escalating doses of an alkylating agent, we have developed four human tumor cell lines which are relatively stably resistant to the drug with which the culture was treated. The response of these cell lines to a variety of alkylating agents was compared to the response of the parent cell lines to the same drug. The Raji/HN2 line was 7-fold resistant to nitrogen mustard and about 3-fold resisant to 4-hydroxyperoxycyclophosphamide, but it was not resistant to N,N''-bis(2-chloroethyl)-N-nitrosourea (BCNU), melphalan (MEL), busulfan, trimethyleneiminethiophosphoramide, 4-hydroperoxyifosfamide, or cisplatin [cis-diamminedichloroplatinum(II)] (CDDP). The Raji/BCNU line was 5.3-fold resistant to BCNU and 4-fold resistant to both MEL and CDDP. The Raji/CP line was 7-fold resistant to CDDP and 3-fold resistant to both nitrogen mustard and BCNU, but it was not resistant to busulfan, trimethyleneiminethiophosphoramide, or 4-hydroxyperoxyifosfamide. The SCC-25/CP line, which was 12-fold resistant to CDDP, was 5-fold resistant to MEL and 3-fold resistant to 4-hydroxyperoxycyclophosphamide. The SCC-25/CP line was almost 24-fold resistant to methotrexate after 30-min treatment and about 7-fold resistant to methotrexate after continuous treatment. None of the other cell lines was resistant to methotrexate. The survival of SCC-25 and SCC-25/CP cells exposed to several antineoplastic agents was examined over several logs of survival. The SCC-25/CP cells are highly resistant to CDDP; the ratio of the slopes of the survival curves (SCC-25/CP to SCC-25) of the two lines was 43. At survivals of 1%, resistance to MEL and BCNU became evident in the SCC-25/CP line. At survivals of 0.1%, resistance to mitomycin C and, to a lesser degree, to Adriamycin and vincristine was evident. It is more difficult to produce resistance to alkylating agents, even with extended selection pressure, than to other antineoplastic drugs such as antimetabolites and natural products. We found no evidence of pleiotropic resistance in any alkylating agent-resistant cell line. Our results suggest that a judicious choice of alkylating agents given in sequential or concurrent combinations may be a rational treatment strategy with potential applications in the clinic.