Temperature dependence of photoluminescence from Mg-doped In0.5Ga0.5P grown by liquid-phase epitaxy

Abstract
The temperature dependence of photoluminescence from the Mg-doped In0.5Ga0.5P layers on (100) GaAs substrates grown by liquid-phase epitaxy has been studied. At low temperature, the spectra show only two major emission peaks involving intrinsic recombination and conduction–band-to-acceptor transition. The intrinsic recombination dominates in the doping concentration range studied (1.0×1017–7.0×1018 cm−3) above 60 K. Below 50 K, these two peaks merged with each other when the doping concentration is higher than 1×1018 cm−3. The temperature dependence of band gap in In0.5Ga0.5P layers determined from the photoluminescence peak energy varies as 1.976 − [7.5 ×10−4 T2/(T + 500)] eV. For the moderately doped concentration (p < 1.4 × 1018 cm−3), the Mg acceptor ionization energy obtained from 50-K photoluminescent spectra is in the range from 37 to 40 meV.